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Abstract. Adverse health effects due to exposure to airborne particles are associated with 
particle deposition within the human respiratory tract. Particle size, shape, chemical 
composition, and the individual physiological characteristics of each person determine to what 
depth inhaled particles may penetrate and deposit within the respiratory tract. Various particle 
inertial classification devices are available to fractionate airborne particles according to their 
aerodynamic size to approximate particle penetration through the human respiratory tract. 
Cyclones are most often used to sample thoracic or respirable fractions of inhaled particles. 
Extensive studies of different cyclonic samplers have shown, however, that the sampling 
characteristics of cyclones do not follow the entire selected convention accurately. In the 
search for a more accurate way to assess worker exposure to different fractions of inhaled dust, 
a novel sampler comprising several inertial impactors arranged in parallel was designed and 
tested. The new design includes a number of separated impactors arranged in parallel. 
Prototypes of respirable and thoracic samplers each comprising four impactors arranged in 
parallel were manufactured and tested. Results indicated that the prototype samplers followed 
closely the penetration characteristics for which they were designed. The new samplers were 
found to perform similarly for liquid and solid test particles; penetration characteristics 
remained unchanged even after prolonged exposure to coal mine dust at high concentration. 
The new parallel impactor design can be applied to approximate any monotonically decreasing 
penetration curve at a selected flow rate. Personal-size samplers that operate at a few L/min as 
well as area samplers that operate at higher flow rates can be made based on the suggested 
design. Performance of such samplers can be predicted with high accuracy employing well-
established impaction theory.  
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1.  Introduction 
Currently, a target specification for size-selective sampling instruments is determined by inhalable, 
thoracic, and respirable sampling conventions agreed upon internationally [1, 2, 3]. Various particle 
inertial classification devices are available to fractionate airborne particles to approximate one of the 
mentioned size-selective sampling criteria. The Button Sampler (SKC Inc., Eighty Four, PA), IOM 
Sampler (SKC Inc., Eighty Four, PA), GSP Sampler (Strohlein GmbH, Kaarst, Germany), and the 
Seven-Hole Sampler (Casella CEL Ltd., Bedford, UK) are examples of devices where the inhalable 
convention is followed well through the appropriate combination of inlet size, shape, and sampling 
flow rate [4, 5, 6]. Cyclones are the samplers most often used to separate thoracic or respirable 
fractions of inhalable particulates. A number of respirable and thoracic cyclones operating at flow 
rates ranging from 1.0 L/min to 10.0 L/min are available from different manufacturers. Extensive 
studies of different cyclonic samplers have shown, however, that the sampling characteristics of 
cyclones do not follow the entire ACGIH/CEN/ISO-defined respirable or thoracic sampling 
convention accurately [7, 8, 9, 10, 11, 12]. In most cases, cyclones oversample smaller particles and 
undersample larger ones as compared to the above mentioned conventions. Additionally, the 
performance of some personal respirable cyclones may be altered by particle build-up on the inner 
walls of the cyclone and particle re-entrainment and bounce-off [8, 13].  

The use of porous polyurethane foam (PUF) as an alternative to cyclones has been proposed and is 
an inexpensive method for particle size-selective sampling [13, 14, 15, 16]. However, the particle 
separation using foams does not provide more accurate results when compared to those obtained using 
cyclones. Another alternative to traditional cyclones is a virtual cyclone – this device is based on a 
non-impact particle separation [17]. A respirable sampler employing the virtual cyclone concept was 
designed and shown to be able to closely follow the respirable convention [18].  

In general, conventional inertial impactors, the most well known and studied inertial particle 
separators, cannot be used for thoracic or respirable particle collection due to the impactor’s sharp cut-
off characteristics. In 1978, Marple suggested the method to fractionate particles according to 
predetermined convention using a number of conventional impactors with different cut-offs [19]. A 
sampler proposed by Marple contained a number of inertial impactors arranged in parallel where each 
impactor simulated part of the predetermined curve so that overall performance of the sampler 
followed the entire selected curve. Different cut-offs were achieved using sets of differently sized 
nozzles. The aerosol was divided equally among different nozzle sets using an appropriate number of 
nozzles in each set. For example, to match the ACGIH respirable curve that was valid at that time, 
Marple used one 2.4-mm, eight 0.87-mm, and fifty-three 0.33-mm nozzles to provide 5.8, 3.5, and 
2.2 µm 50% cut-offs at 2.0 L/min [19]. A similar approach can be used to design samplers for nearly 
any flow rate, with penetration characteristics that approximate any monotonically decreasing 
penetration curve [20]. Several single-stage two- and three-cut-off personal impactors with respirable 
aerosol penetration characteristics were designed and tested [21, 22]. Sampler prototypes with two cut-
offs were found to work well, however, the smallest cut-off nozzles did not work properly in the three-
cut-off sampler [22, 23].  

Jones [23] suggested respirable and thoracic samplers that included a number of separate single-
inlet impactors with different cut-offs arranged in parallel. In this design, each impactor had its own 
collection substrate and filter. In addition, each impactor had an independent flow control valve to 
maintain the appropriate flow rate through each impactor. Therefore, the sampler proposed by Jones 
was bulky and inconvenient to use [23]. Other researchers also used the approach of dividing a 
specific curve into increments: John [24] described a universal impactor for particle sampling within 
selected criteria and Chen et al. [14] used foams of different porosity placed in parallel to simulate the 
respirable curve.  

As discussed above, several impactors arranged in parallel can be employed to build a sampler 
capable of simulating a predetermined curve accurately. However, none of the above mentioned 
samplers using the parallel impactor technique found its application in industrial hygiene. One reason 
for this, in the authors’ opinion, was the lack of reliable and convenient design. This paper presents a 
novel sampler design [25] that contains a number of impactors arranged in parallel. During this study, 



several personal sampler prototypes were built, tested, and shown to be in good agreement with the 
sampling criteria for which they were designed.  

2.  Parallel particle impactor design 
Performance of an inertial impactor is defined in terms of its 50% cut-off size, d50. This means that 
50% of cut-off-size particles penetrate through the impactor and the other 50% are collected on the 
impaction plate. The d50 can be found using the following equation [26, 27]:  
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where µ is air viscosity, W is the width or diameter of the impactor nozzle, Stk50 is the Stokes number 
corresponding to a 50% particle cut-off, ρp is the particle density, V0 is average air velocity in the 
nozzle, and C is the size-dependent Cunningham slip correction factor. The Stk50 depends on the 
Reynolds number of the flow, Re, jet-to-plate distance, S, and impactor nozzle throat length, T. The 
Stokes number may change significantly if porous material is used as a collection substrate [28, 29].  

Typically, particle penetration through the conventional impactor decreases sharply from 100% to 
0% near the 50% cut-off point. The solid line in Figure 1 represents a penetration curve for an 
impactor with a d50=4.0 µm. The dashed curve in Figure 1 shows the respirable convention which has 
the same 50% cut-off of 4.0 µm as the single impactor. Despite the fact that both curves have a 
d50=4.0 µm, it is clear that the conventional impactor (solid curve in Figure 1) will significantly 
oversample particles smaller than 4.0 µm and undersample particles larger than 4.0 µm compared to 
the respirable convention (dashed curve in Figure 1). As discussed, the curve of any predetermined 
shape may be approximated by combining several impactors in parallel [19, 21]. The square symbols 
in Figure 1 show the shape of a penetration curve of a hypothetical sampler containing two impactors 
arranged in parallel where one of the impactors has a 50% cut-off of 2.95 µm and the other has a d50 of 
5.35 µm. The selected cut-off sizes correspond to 75% (midpoint of 50-100) and 25% (midpoint of 0-
50) penetration efficiency of the respirable convention [19]. These numbers were determined based on 
the condition that the flow rate through each impactor is the same and equal to half of the total flow 
rate through the sampler. The curves in Figure 1 representing penetration through samplers containing 
four and six impactors (triangular symbols and circular symbols respectively) were constructed in a 
manner similar to that described above. The airflow through the individual impactors in these samplers 
is equal as it was in the sampler containing two impactors. The flow through a single impactor is one-
fourth of the total flow for the sampler containing four impactors and one-sixth in the case of the six-
impactor sampler. The curves presented in Figure 1 show that the respirable convention can be 
simulated rather closely using a sampler containing four or more impactors arranged in parallel.  

The above described procedures can be applied to model a sampler with characteristics simulating 
the shape of any predetermined curve. The first step is to decide the number of impactors to be used 
and the overall flow rate through the sampler. The second step is to determine the cut-off sizes for 
each impactor according to the shape of the curve the sampler is to simulate and the flow rate through 
the individual impactor chosen. With this information, the inlet nozzle sizes of individual impactors 
can be defined easily using well-established impaction theory [27].  

Control of the airflow through the individual impactors should be addressed when designing a 
sampler containing a number of impactors arranged in parallel. Marple’s design was based on the 
assumption that the pressure drop across the impactor nozzle, ∆P, is approximately equal to the 
dynamic pressure of the air jet in the nozzle [19]: 

02
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where ρ is air density and V0 is the average air velocity in the nozzle. The amount of air for each cut-
off was then controlled by the appropriate size and number of nozzles for each cut-off assuming that 
the air velocity in each nozzle of the sampler was approximately the same. Jones [23] simply placed 
valves beneath each impactor to control the amount of air passing though each impactor.  
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Figure 1. Comparison of the respirable convention curve with theoretically predicted 
performance of samplers containing a different number of inertial impactors arranged in parallel. 

 
In the new sampler design, flow through each impactor is controlled using an appropriately sized 

exit orifice. Figure 2 shows schematically a sampler containing two impactors arranged in parallel. 
Both impactors are completely separated and each has an inlet nozzle, WIn, and exit orifice, WOut. Since 
all inlets of the sampler are at the same atmospheric pressure and all outlets are connected to a single 
pump, the pressure drop across each impactor, ∆Pi, is the same and equal to the overall pressure drop 
across the whole sampler, ∆PS: 

∆PS = ∆P1 = ∆P2.       (3) 

Pressure drop across an individual impactor, ∆Pi, is a sum of pressure drops across the inlet nozzle, 
∆PiIn, and outlet orifice, ∆PiOut: 

iOutiIni PPP ∆+∆=∆ .      (4) 

Using Equations 2, 3, and 4, the following equation may be written: 

2
2

2
2

2
1

2
1 2

1
2
1

2
1

2
1

OutInOutIn VVVV ρρρρ +=+ .    (5) 



 
 

 
Figure 2.  Schematic of sampler comprising 
two inertial impactors arranged in parallel. 

Figure 3.  Schematic of prototype containing 
four impactors arranged in parallel impactor. 
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Equations 3, 4, and 5 can be extended for any number of impactors incorporated in the sampler. 

Thus, taking into account that airjet velocity in the nozzle V=Q/(π(W/2)2), Equation 5 for the sampler 
containing N impactors in parallel would be: 
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As indicated earlier, the size of the inlet nozzle for each impactor is selected depending on the 
shape of the curve the sampler is going to simulate, the overall sampling flow rate, the desired particle 
size cut-offs, and the number of impactors in the sampler. The sizes of outlet orifices then can be 
calculated using Equation 6. Such a sampler can be designed for an overall flow that is equally 
distributed among all impactors (Q1=Q2=… =QN) or a flow rate through each impactor may be set 
individually.  

A schematic of a prototype sampler that includes four impactors arranged in parallel is shown in 
Figure 3. The prototype sampler has an inlet plate with impaction nozzles and an exhaust that is 
divided in four compartments. Each compartment includes collection substrate and an exit orifice. A 
gasket is used between the inlet plate and exhaust to prevent air leakage from outside and among 
individual impactors. Collection plates were cut out of a porous plastic support pad (Cat. No. 225-
2902, SKC Inc., Eighty Four) and soaked with a few drops of silicone oil to minimize particle bounce 
and re-entrainment. Three prototype samplers were tested during this study: two respirable parallel 
particle impactors, RPPI2 and RPPI4, were designed to follow the respirable convention when 
operated at 2.0 and 4.0 L/min flow rates respectively. Thoracic parallel particle impactors (TPPI2) was 
designed to follow the thoracic curve when operated at 2.0 L/min. Parameters of these samplers are 
presented in Table 1. Nozzle sizes were calculated using value of Stokes number different from that 
suggested by impaction theory [27]. Lower value of Stokes number was based on other studies that 
show how porous collection substrate affects the performance of impactors [28, 29, 30] and our own 
experience using porous impaction substrate [31].  
 
 
 



Table 1. Specifications of prototype samplers tested.  Each sampler comprises four inertial impactors 
arranged in parallel.  

Respirable Impactor, RPPI2 
QS=2.0 L/min 

Respirable Impactor, RPPI4 
QS=4.0 L/min 

Thoracic Impactor, TPPI2 
QS=2.0 L/min 

D50, µm WIn, mm WOut, mm D50, µm WIn, mm WOut, mm D50, µm WIn, mm WOut, mm

6.5 3.45 1.68 6.5 2.59 1.30 17.5 5.10 2.15 

4.6 2.71 1.72 4.6 2.06 1.33 11.9 4.00 2.18 

3.5 2.26 1.80 3.5 1.73 1.40 8.9 3.25 2.25 

2.3 1.68 3.45 2.3 1.30 2.59 4.8 2.15 5.10 

3.  Experimental methods 
The performance of three parallel impactor prototypes was evaluated by measuring aerosol 
concentration upstream and downstream of the sampler using an Aerodynamic Particle Sizer (APS, 
Model 3320, TSI Inc., St. Paul, MN). A similar technique has been used widely by other researchers 
and is proven to allow accurate and rapid evaluation of particle samplers [13, 18, 22, 32, 33, 34]. 
Figure 4 shows a schematic of the experimental setup used in the study. The aerosol chamber was 
made of a clear plexiglass cylinder approximately four feet high and one foot in diameter. Test 
particles and HEPA-filtered dry air were introduced and mixed at the top of the chamber. Aerosol 
passed through a honeycomb flow straightener before reaching the test area where two identical 
sampling lines were installed. Air was expelled from the chamber through a 2.5-inch diameter hose to 
a biological safety cabinet (Model SG603, The Baker Company, Sanford, MN). The overall airflow 
through the chamber combining clean air and test aerosol ranged from 40 to 80 L/min resulting in a 
vertical air velocity in the chamber, VCh, from 10 to 20 mm/s. Thus, calm air conditions were 
simulated in the test chamber.  

Three different aerosol generators were employed depending on the type of particle used. A six-jet 
Collison Nebulizer (BGI Inc., Waltham, MA) and a Sono Tek Ultrasonic Atomizer (Sono Tek 
Corporation, Milton, NY) were used to generate Potassium Sodium Tartrate (PST, Spectrum Chemical 
Mfg. Corp., Gardena, CA) and Dioctyl Phthalate (DOP, Spectrum Chemical Mfg. Corp., Gardena, 
CA). Glass spheres (GS, Spheriglass solid spheres, 10000E, Potters Industries Inc., Carlstandt, NJ) 
were aerosolized using a Fluidized Bed Aerosol Generator (Model 3400A, TSI Inc., St. Paul, MN). 
The charge on the generated particles was reduced to Boltzman equilibrium by passing test aerosol 
through five Polonium 210 Alpha source neutralizers (Model 2U500, NRD LLC, Grand Island, NY).  

One of two identical sampling lines was used to measure aerosol size distribution in the chamber, 
NCh(dae). The second sampling line, on which the test sampler was mounted, was employed to register 
particle concentration downstream of the sampler, NDown(dae). Ball valves were used to connect the 
required sampling line to the inlet of an Aerodynamic Particle Sizer (APS) placed beneath the 
chamber. In normal operating condition, the APS is sampling at 5.0 L/min. From this flow, 4.0 L/min 
is used as a sheath air and aerosol is sampled through the sensor at 1.0 L/min. In the setup, both 
sampling lines were connected directly to the 1.0 L/min aerosol sampling inlet using an air splitter 
which also enabled the addition or subtraction of makeup air so that flows through the sampler and the 
APS were maintained at required levels. The APS drew sheath air directly from the room.  

During a single test, a set of six measurements lasting 60 seconds each was performed. NCh(dae) and 
NDown(dae) were measured three times each alternating appropriate sampling lines to the APS inlet. 
Particle penetration P(dae) through the sampler was calculated using the following equation: 
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Figure 4.  Schematic of experimental setup. 

 
It is known that when using APS Model 3320 false large-particle counts may occur due to small 

particle recirculation in the optics chamber. To minimize this effect, overall particle concentration was 
kept below 80 cc-1. A virtual impactor was employed, when needed, to minimize the number of 
particles smaller than 1.0 µm. APS calibration was checked periodically using NIST-traceable 
polymer microspheres of 1.0, 3.0, 4.0, 7.0, and 10.0 µm (Particle Counter Size Standards, Duke 
Scientific Corporation, Palo Alto, CA). The calibration of the APS was found to be stable and in good 
agreement with values provided by the manufacturer. In addition, the validity of the test technique was 
confirmed through testing several commercially available samplers. Data obtained for the respirable 
Higgins-Dewell Cyclone (Model BGI4CP, BGI, Inc., Walthman, MA) and thoracic cyclone (Model 
GK2.69, BGI, Inc., Walthman, MA) were in good agreement with previously reported results for 
similar samplers. Sampling characteristics measured for the Personal Environmental Monitor (PEM) 
(Model PEM 200-2-10, MSP Corporation, Shoreview, MN) also agreed well with manufacturer 
specifications.   

4.  Results and discussion 
Individual impactors of the newly designed samplers were tested to confirm the theoretically predicted 
cut-off sizes. This was accomplished by closing three out of the four inlets so that air was pulled only 



through the inlet of the impactor to be tested. Single impactors were tested at a flow rate equal to one-
fourth of the overall flow through the sampler because all sampler prototypes tested in this study were 
designed to have the overall sampling flow rate split equally among the individual inpactors of the 
sampler.  

Data presented in Figure 5 show penetration as a function of particle aerodynamic size measured 
for each impactor composing prototype sampler RPPI2. PST test particles were used during these 
experiments. The symbols in the graph represent an average of at least three measurements and the 
error bars show standard deviation (the same applies for all other data presented in this paper). Solid 
lines represent the modeling of experimental data using the following sigmoid function: 
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Figure 5. Particle penetration through individual impactors composing the RPPI2 respirable impactor. 
 
The sigmoid function (Equation 8) was found to fit well with data obtained for the individual 

impactors tested. The same function was used by Kwon et al. [35] to fit collection efficiency data 
measured for a five-stage cascade impactor. Once constants a, b, and c were found for the best fit, 
Equation 8 was used to calculate d50. The table in the corner of Figure 5 includes calculated and 
measured 50% cut-off sizes for each impactor incorporated in the RPPI2 sampler. The data shows that 
the measured d50 are in very good agreement with theoretically predicted values. Agreement was 
similarly good between the design and the experimental d50 for the impactors composing samplers 
RPPI4 and TPPI2.  

Figure 6 shows the penetration characteristics of prototype sampler RPPI2. The open circles 
represent the initial performance of the sampler, i.e., the sampler was tested with new, clean collection 



substrates installed. The solid triangles show the penetration measured for sampler RPPI2 after it was 
exposed to coal mine dust for six hours. Figure 6 also includes a curve representing the respirable 
convention (solid line) and a curve mathematically constructed using data obtained for individual 
impactors (dashed line). The latter simulates the respirable curve more smoothly than was theoretically 
predicted for the sampler containing four impactors (Figure 1). The theoretical prediction was based 
on the assumption that all four impactors have sharp penetration characteristics as shown in Figure 1 
for a single impactor. However, the data (Figure 5) indicate that the actual shape of the penetration 
curves for all individual impactors is not as steep as the one employed during mathematical 
simulation. Thus, the combined performance of the four impactors arranged in parallel is smoother 
(Figure 6, dashed line) when compared to the predicted characteristics (Figure 1, triangles). The initial 
overall penetration measured for the RPPI2 sampler (circles) follows closely the respirable curve 
(solid line) and the curve constructed using individual impactor data (dashed line). Thus, data 
presented in Figure 6 indicate that the performance of the RPPI2 sampler is in good agreement with 
the entire respirable convention, and, at the same time show the validity of the new design.  
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Figure 6.  Comparison of performance of RPPI2 sampler with respirable convention. 
 
To assess loading effect on the performance of the RPPI2 and RPPI4 samplers, they were operated 

for six hours in a Marple chamber at the NIOSH Pittsburgh Research Laboratory (Pittsburgh, PA). The 
mass of respirable fraction of Keystone coal dust measured using a Higgins-Dewell (HD) respirable 
cyclone was 4.76 mg/m3. During an earlier study using the same Marple chamber under similar 
conditions [36], it was established that the size distribution of Keystone coal dust had mass median 
aerodynamic diameter (MMAD) equal to 3.91 µm and a geometric standard deviation (GSD) equal to 
3.05. It can be shown that the mass of respirable fraction for the mentioned size distribution would 
make approximately 50 % of the total mass. Thus, we can conclude that the collection plates of RPPI2 
and RPPI4 samplers were loaded with approximately 3.4 and 6.8 mg of coal dust respectively. As 



shown in Figure 6 (solid triangles), such load did not affect the performance of the RPPI2 sampler: 
neither particle bounce-off nor blow-off of collected particles was observed. The same was found to be 
valid for the RPPI4 sampler. These findings are in agreement with the stable performance of oil-
impregnated porous impaction plates as reported by Marple and McCormack [18].  

It is known that solid particles tend to be more bouncy than liquid particles. For this reason, 
sampler performance is often assessed using both types of test particles. Therefore, in addition to the 
potassium sodium tartrate (PST) particles recommended by ASTM standard D6061-01 [37], the 
parallel impactor samplers were also tested using glass microspheres (GS) and dioctyl phthalate (DOP) 
test particles. Figure 7 shows how three different types of test particles penetrate through the RPPI2 
sampler. There is no significant difference in sampler performance obtained using PST, GS, or DOP 
test particles. In all cases, sampling characteristics stayed close to the respirable convention – the 
curve the sampler was designed to follow. Thus, it can be concluded that the sampler containing four 
impactors arranged in parallel collects liquid and solid particles similarly and that there is no 
indication of increased particle bounce even for smooth-surface, high-density glass spheres.  
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Figure 7.  Comparison of penetration characteristics of the RPPI2 sampler obtained using different 
test particles. 
 

Figure 8 compares the respirable convention with the penetration characteristics measured for the 
parallel impactor samplers and the Higgins-Dewell type respirable cyclone. All three samplers were 
tested using PST test aerosol and identical test procedures. The data for the HD Cyclone is in good 
agreement with results reported by Bartley et al. [7] and Maynard and Kenny [11] for a metal cyclone 
of a similar geometry. Although neither of these two studies tested the cyclone at a 2.2 L/min sampling 
flow rate, data presented in both studies suggest that at this particular flow the cyclone will match the 
respirable convention best. Nevertheless, the HD Cyclone oversamples smaller particles and 
undersamples larger ones (Figure 8., solid squares) when compared to the respirable convention as do 
many other cyclonic samplers [8, 9, 10, 12]. The results presented in Figure 8 clearly indicate that both 



newly designed parallel impactor samplers follow the respirable convention more closely than the 
respirable cyclone tested.  
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Figure 8.  Comparison of penetration characteristics measured for the RPPI2 and RPPI4 
parallel impactor samplers and HD Cyclone.  

 
Comparison of the bias maps plotted for the RPPI4 sampler and the HD Cyclone (Figure 9) leads to 

a similar conclusion: the parallel impactor outperforms the cyclonic sampler. Bias mapping is a widely 
accepted way to present the performance of a sampler [7, 9, 37]. As discussed earlier, the 
mathematical model (Equation 8) was used to fit experimental data. Once the model for the sampler in 
question is established, it can be used to calculate the mass concentration sampled by this sampler, 
CSamp, for any chosen aerosol size distribution. If CR is the concentration measured by an ideal 
respirable sampler, then mean relative bias, ∆, is defined as follows [7, 37]: 
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=∆      (9) 
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Figure 9.  Bias maps plotted for the RPPI4 respirable sampler and the HD Cyclone. 

 
Figure 9 includes the RPPI4 sampler and HD Cyclone bias charts for lognormal aerosol size 

distributions with geometric standard deviations between 1.5 and 3.5 and mass median diameters of 
< 25 µm. Data show that for a wide range of aerosol size distribution, particulate mass measured using 
the RPPI4 sampler will not differ by more than ± 5 % from the mass collected using an ideal respirable 
sampler. This difference falls below –10 % only for the rare narrow distribution of large aerosol (small 
GSD and large MMAD) which can be excluded from sampler evaluation. Per ASTM D60061-01 [37], 
the respirable sampler would only be evaluated at aerosol size distributions where the respirable 
fraction is greater than 5 % of a total aerosol. This omits sizes below the dashed line in Figures 9a and 
9b defined by: (MMAD,GSD) = (10 µm, 1.5) to (25 µm, 2.75) [37]. Data provided in Figure 9 shows 
that the HD Cyclone will provide less accurate results compare to the RPI4 sampler.  

Figure 10 includes penetration data for the newly designed thoracic parallel impactor sampler 
(TPPI2), Personal Environmental Monitor (PEM 10, MSP Corporation, Shoreview, MN), and GK2.69 
Cyclone (BGI, Inc., Waltham, MA). Figure 10 also shows a curve representing the thoracic 
convention. As indicated earlier, the TPPI2 sampler was designed using the parallel impactor concept 
to meet the thoracic convention at a 2.0 L/min sampling flow rate. According to manufacturer 
specifications, the PEM 10 is designed to have a 10.0 µm 50% cut-off at a sampling flow rate of 2.0 
L/min and the GK2.69 Cyclone will conform to the thoracic curve at 1.6 L/min.  
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Figure 10.  Comparison of penetration measured for TPPI2 sampler, GK2.69 cyclone, and PEM 10. 

 
Penetration of PST test particles measured for the TPPI2 sampler (Figure 10, circles) demonstrates 

good agreement with the thoracic convention. It should be noted that the tests did not include a 
thorough evaluation of inlet aspiration efficiency which may influence results for particles larger than 
10 µm. Also, reliable data was not produced for particles larger than approximately 17 µm due to the 
low particle count above that size. Experimental data were fitted and performance of the TPPI2 
sampler was extrapolated for larger particle sizes using the following model: 

c
ae

ae

b
d
adP







+

=

1
)( .     (10) 

The same equation was used to model penetration data obtained for the GK2.69 Cyclone (squares in 
Figure 10).   

Experimental data for the PEM 10 (triangles in Figure 10) show good agreement with manufacturer 
specifications. Penetration characteristics measured for the GK2.69 Cyclone (squares in Figure 10) 
conform well with sampler specifications and with results reported by Maynard [33]. These facts 
indicate that the test system used in this study provides accurate results in the larger particle range 
despite the limitations mentioned earlier. Thus, it can be concluded that the newly designed TPPI2 
sampler closely follows the entire thoracic convention.  

 
 



5.  Conclusion 
The novel design of a sampler comprising a number of inertial impactors arranged in parallel was 
applied to manufacture two respirable samplers operating at a 2.0 and 4.0 L/min sampling flow rate 
and one sampler approximating the thoracic convention at 2.0 L/min. Each sampler incorporated four 
impactors arranged in parallel. Test results for all samplers showed good agreement with predicted 
characteristics. Penetration characteristics of both respirable samplers followed the entire respirable 
convention more closely when compared to the performance of the commercially available and widely 
used Higgins-Dewell respirable cyclone. The newly designed thoracic sampler also performed as 
predicted and showed good agreement with the entire thoracic convention.  

Using solid and liquid test particles, it was shown during this study that performance of the newly 
designed samplers does not depend on the type of particles collected. Experiments revealed also that 
an approximate load of 6.4 mg of coal mine dust on the sampler collection plates did not affect the 
performance of the new sampler.  

The suggested parallel impactor arrangement can be used to design samplers that will accurately 
fractionate inhalable particles according to predetermined characteristics including the 
ACGIH/CEN/ISO-defined respirable and thoracic conventions or any other monotonically decreasing 
penetration curve. The new design can be applied to fabricate personal samplers operating at a few 
liters per minute or area samplers operating at higher flow rates. Parameters of samplers with parallel 
impactors can be predicted with high accuracy. The suggested parallel impactor design insures 
consistent sampler performance for different types of aerosol and a wide range of particle 
concentrations.   
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